

ВЫКЛЮЧАТЕЛЬ ВАКУУМНЫЙ ТИПА **ВВВ-10**

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

1. ОПИСАНИЕ И РАБОТА ВЫКЛЮЧАТЕЛЯ	3	
1.1. Назначение	3	
1.2. Технические характеристики	4	
1.3. Устройство и работа выключателя	5	
1.3.1. Принцип работы	5	
1.3.2. Устройство выключателя	5	
1.3.3. Работа выключателя	6	
1.4. Устройство и работа составных частей	6	
2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	13	
2.1. Подготовка выключателя к использованию	13	
2.2. Подготовка к работе	13	
2.3. Меры безопасности	15	
3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	16	
4. ХРАНЕНИЕ	17	
5. ТРАНСПОРТИРОВАНИЕ	17	
6. УТИЛИЗАЦИЯ	18	
Приложение А. Перечень запасных частей и принадлежностей (ЗИП)	19	
Приложение Б. Перечень оборудования и материалов, необходимых для		
технического обслуживания, контроля, регулировки и настройки		
выключателя.	19	
Приложение В. Крутящие моменты	19	
Приложение Г. Перечень исполнений выключателя		

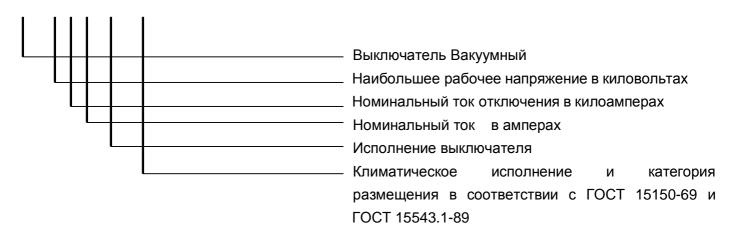
Настоящее руководство по эксплуатации (РЭ) предназначено для изучения устройства, принципа действия, правил настройки, регулировки и эксплуатации выключателей вакуумных типов ВВВ-10 (в дальнейшем именуемые "выключатели") и содержит технические характеристики выключателей, условия их применения, указания мер безопасности, подготовку к работе и техническому обслуживанию, рекомендации по ограничению перенапряжений, а также сведения о хранении, транспортировании и утилизации.

Выключатель соответствует требованиям ГОСТ Р 52565 и требованиям IEC62271 - 100:2008. Руководство по эксплуатации может служить информационным материалом для ознакомления с выключателями проектных, монтажных и эксплуатационных служб.

ВНИМАНИЕ!

В связи с постоянной работой по совершенствованию изделия в его конструкцию могут быть внесены незначительные изменения, не отраженные в настоящем документе.

1. ОПИСАНИЕ И РАБОТА ВЫКЛЮЧАТЕЛЯ


1.1. НАЗНАЧЕНИЕ

1.1.1. Выключатели комплектуются встроенным пружиномоторным приводом и предназначены для коммутации электрических цепей при нормальных и аварийных режимах в сетях трехфазного переменного тока с изолированной нейтралью частоты 50 Гц с номинальным напряжением 10 кВ.

Устанавливаются в шкафах комплектных распределительных устройств (КРУ и КСО), а также используются для замены маломасляных и электромагнитных выключателей.

Структура условного обозначения выключателя:

ВВВ-10-X/X-М УХЛ2

Пример записи обозначения вакуумного выключателя номинального напряжения 10 кВ с номинальным током отключения 20 кА, номинальным током 630 А, климатического исполнения УХЛ и категории размещения 2, исполнения М:

1.1.4. Условия эксплуатации выключателей

Номинальные значения воздействующих факторов внешней среды:

- высота над уровнем моря не более 1000 м;
- верхнее рабочее значение температуры воздуха, окружающего КРУ с выключателем плюс 55°C
- нижнее рабочее значение температуры при эксплуатации не менее минус 60°С;
- относительная влажность воздуха 80% при 20°C;
- верхнее значение относительной влажности воздуха 100% при 25° C;
- окружающая среда невзрывоопасная, атмосфера типа II (промышленная), содержание коррозионно-активных агентов по ГОСТ 15150-69;
- запыленность окружающего воздуха до 10 мг/м3.
- 1.1.5.Выключатель обеспечивает нормальную работу и нормированные параметры при крене и дифференте до 5°.
- 1.1.6. Значения механических факторов внешней среды должны соответствовать группе М6 по ГОСТ 17516.1-90.

1.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование параметра	Нормы
Номинальное напряжение,U _{ном} ., кВ	10
Наибольшее рабочее напряжение, Uн.р, кВ	12
Номинальный ток отключения, I _{о ном.,} кА	20
Номинальный ток, І _{ном.,} А	630,1000,1250
Ток термической стойкости, $I_{\scriptscriptstyle T}$, в течение 3с, кА	20
Ток электродинамической стойкости, I _g , кА	51
Собственное время отключения, to.c, c, не более	0,03
Собственное время включения, tвс, с, не более	0,05
Испытательное кратковременное напряжение пром. частоты: одноминутное, Uucп., кВ	42
Испытательное напряжение полного грозового импульса, Uисп. имп, кВ	75
Масса, кг, не более:	80
Ресурс по механической стойкости, циклы "B-tп-O" (включение- произвольная пауза-отключение)	30000
Ресурс по коммутационной стойкости при номинальном токе, циклы "В- tп -О" при номинальном токе отключения, циклы "ВО"	30000 50
Срок службы до списания, годы, не менее	30
Номинальное напряжение электромагнитов управления YAT, YAC, YAV и двигателя, В: переменного тока постоянного тока	100,220 110,220
Ток срабатывания токовых электромагнитов отключения для схем с дешунтированием YAA, A	5
Потребляемая мощность электродвигателя заводки рабочих пружин привода, Вт, не более	400

Время заводки рабочих пружин привода на одну операцию включения при номинально напряжении, с, не более	DM 15
Ход подвижного контакта, мм	8+2
Допустимый износ контактов, мм, не более	2
Электрическое сопротивление полюсов главной цепи, мкОм,не более:	≤ 35

1.3 УСТРОЙСТВО И РАБОТА ВЫКЛЮЧАТЕЛЯ

1.3.1. ПРИНЦИП РАБОТЫ

- Принцип работы выключателя основан на гашении электрической дуги, возникающей между контактами в вакууме, обладающей высокой электрической прочностью.
- Операция включения осуществляется за счет энергии взведенной пружины включения, а отключение за счет отключающих пружин и пружин поджатия контактов, которые срабатывают при воздействии одного из электромагнитов отключения или кнопки отключения на защелку привода, удерживающую выключатель во включенном положении.

1.3.2 УСТРОЙСТВО ВЫКЛЮЧАТЕЛЯ

- Выключатель (рис.1;1 а) состоит из следующих основных частей:
- рамы 1, являющейся основанием выключателя, имеющей в нижней части четыре отверстия для крепления в ячейке и на которой приварена бонка заземления 22;
- трех полюсов 2, установленных на раме выключателя;
- пружинного привода 3, с механизмом ручной заводки 4 и кнопками ручного включения 5 и отключения 6;
- мотор-редуктора 7;
- электромагнита отключения 8;
- электромагнита включения 10;
- блока элементов управления 11;
- блока сигнализации 12;
- системы вала и рычагов 13, передающих движения от пружинного привода к полюсам.
- отключающих пружин 14 и демпфера 15, определяющих отключенное положение выключателя;
- включающей пружины пружинного привода 16;
- указателя положения взвода пружины включения 17;
- зажимов 18, для подключения вторичных цепей;
- со стороны привода рама закрыта крышкой 19, в которой также имеются:
- окно для наблюдения за указателем положением выключателя 20;
- окно для наблюдения за счетчиком числа циклов 21;
- окно для взвода пружины включения;

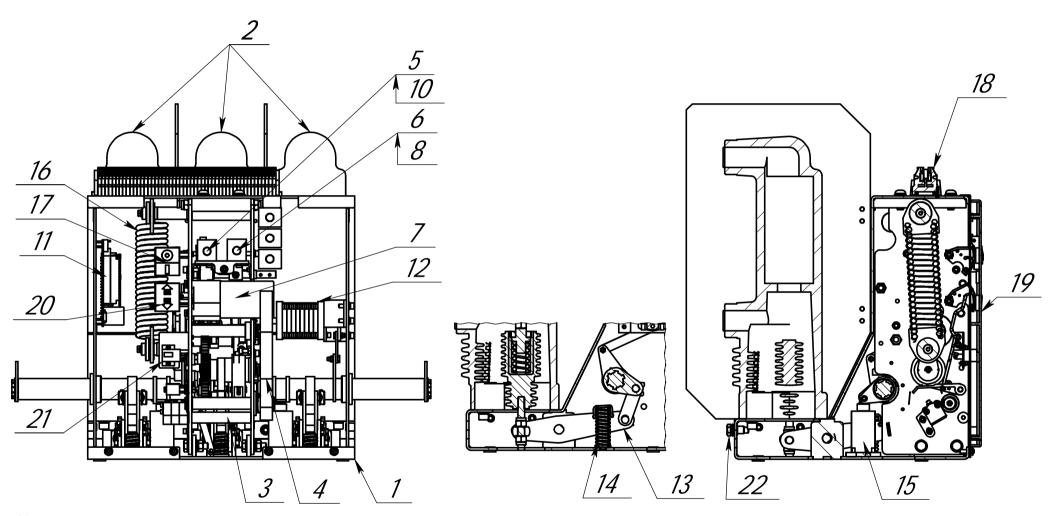
1.3.3. РАБОТА ВЫКЛЮЧАТЕЛЯ

- 1.3.3.1. Перед включением выключателя должна быть взведена пружина включения вручную или при помощи встроенного мотор-редуктора. Указатель положения пружины включения при этом будет в положении «ВЗВЕДЕНО». После окончания взвода пружины блок-контакты привода размыкаются, и с мотор-редуктора привода снимается напряжения питания.
- 1.3.3.2. Включение выключателя происходит при подаче питания на катушку электромагнита включения или нажатия на кнопку включения. При этом выбивается защелка включения в приводе и пружина включения через систему вала и рычагов замыкает контакты ВДК в полюсе.

При этом кулачок привода воздействует на промежуточный вал, и он фиксируется на защелке отключения. Также при этом замыкаются блок-контакты привода и напряжение оперативного питания(при его наличии)поступает на двигатель мотор редуктора. Мотор-редуктор начинает взвод пружины включения, подготавливая следующий цикл «В». После окончательной заводки пружин происходит установка привода на защелку включения, блок контакты привода снимают напряжение оперативного питания, указатель положения пружин устанавливается в положение «ВЗВЕДЕНО».

1.3.3.3. Отключение выключателя происходит при подаче питания на катушки электромагнитов отключения или нажатия на кнопку отключения. При этом выбивается защелка включения, система вала и рычагов получают необходимую степень свободы. Под воздействием пружин поджатия и пружины отключения механизм привода и вал выключателя возвращаются в исходное положение.

1.4. УСТРОЙСТВО И РАБОТА СОСТАВНЫХ ЧАСТЕЙ ВЫКЛЮЧАТЕЛЯ


1.4.1. Полюса выключателя состоит из:

- изоляционного полюса, в котором установлена вакуумная дугогасительная камера(в дальнейшем ВДК);
- верхнего и нижнего токовыводов;
- гибкой связи между подвижным контактом ВДК и нижним токовыводом;
- изоляционной тяги с механизмом узла поджатия контактов ВДК, соединенной с подвижным контактом ВДК через гибкую связь.

Механизм узла поджатия контактов служит для компенсации износа контактов ВДК, образующегося при коммутациях токов нагрузки и токов короткого замыкания, а также для обеспечения нормальной работы выключателя в циклах «В» и «ВО» при коммутации. Полюс с ВДК относится к неремонтопригодным изделиям и не требует обслуживания за весь срок службы.

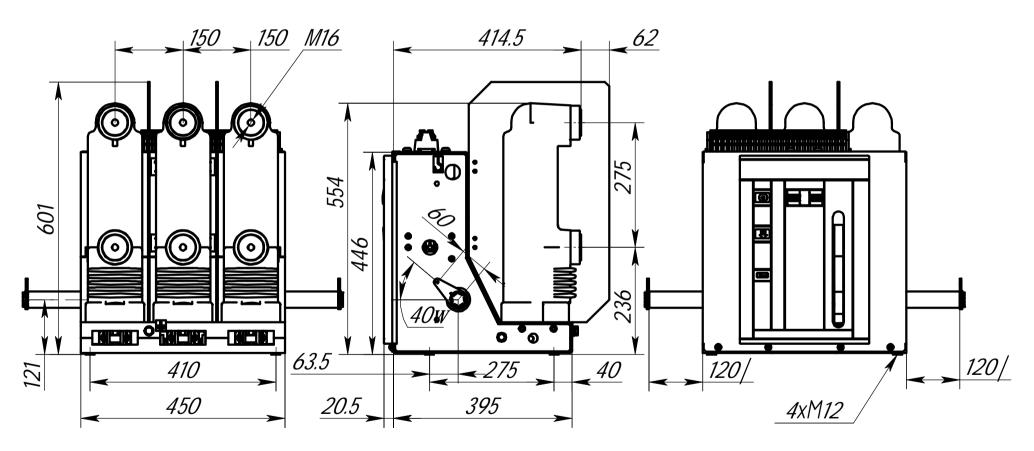

В процессе включения выключателя, после замыкания контактов ВДК, при дальнейшем движении механизма выключателя, происходит дополнительное сжатие пружины узла поджатия и создается "прижим" контактов.

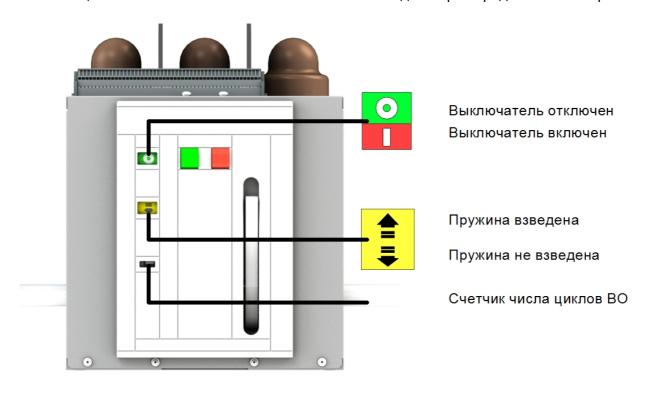
Рис.1 Общий вид выключателя.

Крышка поз. 19 не показана

Рис. 1а. Габаритные, установочные и присоединительные размеры выключателя

* Удлинения валов по заказу

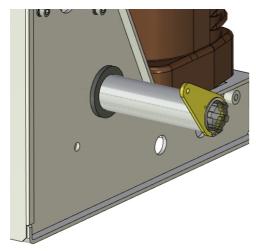
1.4.2 Пружинный привод состоит из:


- механизма с защелками включения и отключения;
- пружин включения выключателя;
- промежуточного вала, соединенного через рычаги с изоляционной тягой полюса;
- электромагнитов включения и отключения
- пружин включения;
- кнопок включения и отключения;
- блок-контактов привода;
- указателя положением выключателя;
- счетчика числа циклов ВО;
- указателя положения пружины включения;
- 1.4.3. Для обеспечения правильной работы выключателя в состав привода входят плата управления (11) и блок-контакты выключателя (12) рис.1, возможные положения блок-контактов на рис. 3.

Соединение вторичных цепей выключателя с внешними цепями производится при помощи блока зажимов (18).

Счетчик количества циклов (21) показывает общее количество циклов операций В-О, выполненных с момента сборки выключателя.

Для визуального наблюдения в состав привода входят следующие элементы:


- индикатор взвода пружины (20), который отображает текущее состояние силовой пружины привода и может находиться в одном из двух возможных положений;
 - индикатор положения выключателя (16), который отражает текущее положение контактов главной цепи выключателя. Возможные положения индикаторов представлены на рис.2

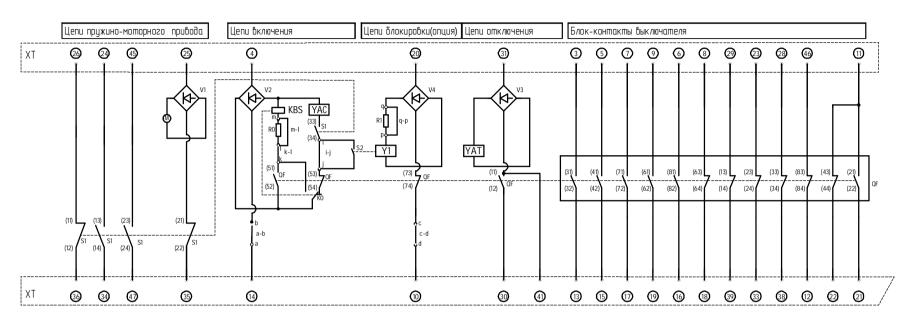
1.4.3. Блокировки

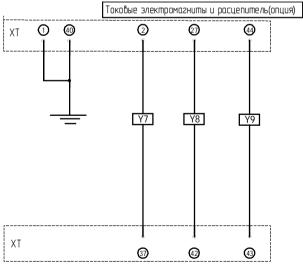
1.4.3.1 Механическая блокировка внешних устройств (рис. 3) служит для реализации блокировок внешних устройств в ячейках КСО и применяется по заказу. Эквивалентная масса деталей блокировочных механизмов, присоединяемых к блокировке внешних устройств выключателя ВВ-12, не должна превышать 0,5 кг. Габаритно-присоединительные размеры указаны на рис.1а.

Рис.3

- 1.4.3.2 Блокировка от повторного включения препятствует подаче команды на повторное включение выключателя в отключенном положении. Блокировка реализована на плате управления (11) (рис. 1) в схеме цепей управления выключателем (Рис.4). Она препятствует подаче команды на электромагнит включения в дистанционном режиме.
- 1.4.3.2 Электромагнитная блокировка включения выключателя при отсутствии оперативного питания позволяет блокировать спусковой механизм включения выключателя, при этом осуществляется блокировка ручного включения от кнопки «Включение» и дистанционного от электромагнита включения.

1.4.4. Вторичные цепи


Для подключения внешних вспомогательных цепей, установлен клеммный ряд. Клеммный ряд расположен снаружи, в верхней части привода, и может быть закрыт металлическим кожухом. Принципиальные электрические схемы вторичных цепей приведены рис.4.


1.4.4.1. Оборудование вторичных цепей

Характеристики оборудования вспомогательных цепей представлены в табл. 2

Сечения внешних присоединительных проводов цепи питания максимального расцепителя тока рассчитаны на кратковременное протекание тока (табл. 2). Внешняя схема управления выключателем должна обеспечивать принудительное снятие напряжения питания электромагнитов включения и отключения, максимального расцепителя тока, электродвигателя взвода пружины при превышении наибольшей допустимой длительности непрерывного протекания тока.

Рис.4 Схема электрическая принципиальная

Положение перемычек на плате управления + установлено, - не установлено

Перемычка	m-I	q-p
220V AC/DC	-	-
110V AC/DC	+	+

Перемычка і-ј снимается при установке блокировки(опция).

KBS	Блокировка от повторного включения
М	Мотор-редуктор привода взвода пружины
S1-S3	Контакты состояния привода взвода пружины
QF	Контаеты состояния выключателя
YAT	Электромагнит отключения
YAC	Электромагнит включения
YA1	Электромагнит блокировки(опция)
YA2	Токовый электромагнит(опция)
YA3	Токовый электромагнит(опция)
YA4	Дополнительный электромагнит(опция)
XT	Клеммы блока зажимов выключателя

Контакты привода и выключателяна схеме: - пружина привода не взведена

- выключатель отключен

		Электрическая цепь					
№ п/п	Наименование параметра	Электро магнит включе- ния	Электро магнит отключе- ния	Макси- мальный Расцепи- тель * тока	Минималь- ный Расцепи- тель * напряжения	Минималь- ный расцепи- тель * напряжения	Электро- двигатель взвода пружины
	Номинальное напряжение питания, Un, B	-110/220 50 Γμ = 110/220	-110/220 50 Γц = 110/220	1	-110/220 50 Γц = 110/220;	-220 50 Гц =220;	-110/220 50 Γц = 110/220
2	Диапазон рабочих напряжений, % Un	~/= 85 =105	~65=120/= 70=110		< 35=>70 >85=< 35	< 35=>70 >85=< 35	~/= 85 =110
3	Номинальный ток (для максимального расцепителя тока - гок срабатывания), 1 _н , А	1	1	3; 5	-		1
4	Наибольший пусковой ток (для максимального расцепителя тока - ток термической стойкости), I _{max} , A	5	5	100	-		2
5	Наибольшая допустимая длительность непрерывного протекания I _{max} , с	2	2	2	-		10

^{*}Опция

1.4.4.2. Блок-контакты

Блок-контакты выключателя (12) (рис. 1) и блок-контакты привода силовой пружины расположены на приводе выключателя.

Технические характеристики блок-контактов представлены в табл. 3.

Таблица 3

		таолица з	
	Блок-контакты		
Наименование параметра	выключателя	силовой пружины	
Номинальное напряжение, В	-110/220 50 Гц = 110/220	-110/220 50 Гц = 110/220	
Номинальный ток, А	10	10	
Количество переключающих контактов	4 HO + 4 H3 + комбинации	1 HO + 1 H3	
Одноминутное испытательное напряжение изоляции, В	2000	2000	

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1.ПОДГОТОВКА ВЫКЛЮЧАТЕЛЯ К ИСПОЛЬЗОВАНИЮ

Использование выключателя должно вестись в соответствии с настоящим руководством по эксплуатации, паспортом, а также в соответствии с документами:

"Правилами технической эксплуатации станций и сетей";

"Правилами устройства электроустановок", утвержденными Госэнергонадзором.

При эксплуатации основные параметры выключателя: наибольшее рабочее напряжение и ток нагрузки не должны превышать значений, указанных в табл .1 настоящего руководства по эксплуатации. Требования к внешним воздействующим факторам, в том числе к окружающей среде, указаны в п.п. 1.1.3; 1.1.4; 1.1.5.

После вскрытия упаковки необходимо произвести наружный осмотр выключателя, обращая особое внимание на наличие трещин, царапин и сколов керамического корпуса ВДК и наличие следов коррозии, повреждений на самом выключателе.

Проверить комплектность выключателя согласно разделу 3 паспорта.

Результаты осмотра выключателя, упаковки, комплектности поставки отразить в акте приемки изделия.

Консервацию и расконсервацию выключателя, встроенного в ячейку, производить в соответствии с инструкцией предприятия-изготовителя КРУ.

При эксплуатации выключателей напряжение и токовая нагрузка не должны превышать величин, указанных в разделе 1.2 настоящего руководства по эксплуатации.

При эксплуатации выключателей необходимо соблюдать меры безопасности, указанные в разделе 2.3 настоящего руководства по эксплуатации.

Все сведения об отключениях коротких замыканий, неисправностях, результаты периодических осмотров заносить в специальный журнал при распределительном устройстве на месте эксплуатации.

2.2. ПОДГОТОВКА К РАБОТЕ

Перед пуском в эксплуатацию необходимо выполнить следующие действия:

убедиться, что напряжение оперативного питания находится в допустимых пределах (табл. 2); Убедиться в отсутствии посторонних предметов снаружи и внутри выключателя; убедиться в наличии условий для циркуляции воздуха вокруг выключателя для предотвращения нагрева его отдельных частей выше допустимых температур; выполнить следующие процедуры проверки:

2.2.1. Внешний осмотр. Проверяются:

- состояние защитных покрытий корпуса, элементов привода, контактных систем;
- состояние поверхности наружных изоляционных частей полюсов главной цепи;
- состояние поверхности контактов главной токоведущей цепи;

Поверхности полюсов главной цепи должны быть чистыми, без следов отложений грязи и смазочного материала. Не допускается наличие на поверхностях полюсов главной цепи трещин, сколов и других повреждений, снижающих механическую и изоляционную прочность конструкции;

- наличие отслоений серебряного покрытия на контактных площадках выводов главной токоведущей цепи;
 - нарушение защитных покрытий корпуса, элементов привода;
 - нарушение целостности изоляции вспомогательных цепей:
 - 2.2.2. Проверка электрического сопротивления главной токоведущей цепи.

Измерения проводятся при помощи микроомметра; измерение проводится для каждого полюса главной цепи во включенном положении выключателя.

Величины измеренных электрических сопротивлений каждого полюса главной цепи не должны превышать значений, указанных в табл. 1.

- 2.2.3. Измерение сопротивления и испытание электрической прочности изоляции главной токоведущей цепи.
 - измерение сопротивления изоляции проводится мегомметром на напряжение 2500 В;
- испытание электрической прочности изоляции проводится напряжением 42 кВ 50 Гц в течение 1 минуты, допускается испытание выключателей, предназначенных для установки в распределительные устройства на напряжение 6 кВ, проводить напряжением 32 кВ 50 Гц;
- измерение сопротивления и испытание электрической прочности изоляции относительно земли и между полюсами (выключатель включен, показано для 1 полюса);
- измерение сопротивления и испытание электрической прочности изоляции на контактный разрыв (выключатель отключен, показано для 1 полюса);

Выключатель считается выдержавшим испытание, если: - сопротивление изоляции каждого полюса главной цепи относительно других полюсов главной цепи и земли и сопротивление изоляции вакуумного промежутка между контактами полюса главной цепи не менее 1000 МОм;

- в процессе испытания электрической прочности изоляции не произошло пробоя изоляции;
- 2.2.4. Измерение сопротивления изоляции вспомогательных цепей:

Измерение сопротивления изоляции проводится с помощью мегомметра на напряжение 1000 В. Выключатель считается выдержавшим испытание, если сопротивление изоляции гальванически не связанных цепей - не менее 1 Мом.

2.2.5. Проверка характеристик выключателя:

Производятся следующие операции:

- 5 операций В и О в ручном режиме с ручным взводом силовой пружины;
- 5 операций В и О в дистанционном режиме при номинальном и минимальном напряжении оперативного питания (табл. 2);
- 5 циклов BO в дистанционном режиме при номинальном напряжении оперативного питания.

При выполнении операций в дистанционном режиме контролируются собственные времена включения/ отключения выключателя, разновременность включения/отключения контактов полюсов главной цепи, дребезг контактов при включении.

Выключатель считается выдержавшим испытание, если:

- не произошло ни одного сбоя при выполнении операций В, О и циклов ВО при подаче соответствующих команд во всех режимах;
- в дистанционном режиме все измеренные значения времен соответствуют допустимым значениям, представленным в табл. 1 или 2;
 - счетчик количества циклов отсчитывает каждый цикл операций В и О;
 - 2.2.6. Проверка исправности действия индикаторов и блокировок.

Выполняются следующие проверки:

- проверка соответствия индикатора положения выключателя фактическому положению выключателя;
- проверка соответствия индикатора взвода пружины фактическому состоянию силовой пружины;
- проверка электромагнитной блокировки(при наличии);

Выключатель считается выдержавшим испытание, если:

- счетчик количества циклов отсчитывает каждый цикл операций В и О
- положение индикатора положения выключателя должно соответствовать фактическому положению выключателя:
- положение индикатора взвода пружины должно соответствовать фактическому состоянию силовой пружины;
- работа блокировок должна соответствовать их назначению
 - 2.2.7. Проверка работоспособности вторичных цепей.
- проверка цепей управления производится посредством выполнения соответствующих операций и проверки соответствия положения выключателя выполненным операциям;
- проверка цепей блок-контактов при выполнении соответствующих операций производится с помощью тестера в режиме индикатора низкого сопротивления;

Выключатель считается выдержавшим испытание, если:

- положение выключателя соответствует подаваемым командам в цепи управления;
- положение блок-контактов соответствует положению выключателя;

2.3. МЕРЫ БЕЗОПАСНОСТИ

2.3.1. Персонал, обслуживающий выключатель, обязан изучить устройство и принцип его действия по настоящему руководству по эксплуатации.

При монтаже, наладочных испытаниях, осмотрах, ремонтах и эксплуатации строго соблюдать и выполнять " Правила техники безопасности при эксплуатации электроустановок потребителей", а также дополнительные требования, предусмотренные настоящим разделом.

2.3.2. Необходимо надежно заземлять раму выключателя при помощи шинок заземления с корпусом шкафа КРУ. Сопротивление между шинками заземления и каждой доступной прикосновению металлической нетоковедущей частью выключателя, которая может оказаться под напряжением, не должно превышать 0,1 Ом.

- 2.3.3. Все работы, связанные с техническим обслуживанием, регулировкой, настройкой и ремонтом, производить при отсутствии напряжения на обоих выводах полюсов и вспомогательных цепях.
- 2.3.4. Запрещается работа людей на участке схемы, который отключен лишь вакуумным выключателем, так как возможен случайный пробой ВДК, обязательно дополнительное отключение участка схемы разъединителем с видимым разрывом электрической цепи.
- 2.3.5. При выполнении ремонтных работ необходимо помнить, что пружина поджатия имеет предварительное сжатие, поэтому при ее снятии и установке необходимо принять меры предосторожности (приспособление должно надежно фиксировать пружину в сжатом состоянии).
- 2.3.6. Перед выполнением любых операций по обслуживанию выключателей необходимо убедиться, что силовая пружина разряжена, оперативное питание отсутствует. Для разрядки силовой пружины необходимо отключить питание электродвигателя взвода пружины и произвести последовательно операции В и О с помощью кнопок «Включение» и «Отключение» на лицевой панели выключателя.
- 2.3.7. Оперативное включение и отключение выключателя необходимо производить только дистанционно, кроме аварийного отключения и включения.
- 2.3.8. При испытании электрической прочности изоляции ВДК напряжением промышленной частоты выключатель может являться источником рентгеновского излучения. Защита персонала от источника рентгеновского излучения должна соответствовать требованиям раздела 3 ГОСТ 12.2.007.0-75, СП.2.6.1.758-99 «Нормы радиационной безопасности (НРБ-99)" и "Санитарным правилам работы с неиспользуемым рентгеновским излучением". В связи с этим при проведении испытаний обслуживающий персонал должен находиться от испытуемого объекта на безопасном расстоянии не менее 8м. В случае невозможности удаления персонала на указанное расстояние, между испытуемым объектом и производящим испытание персоналом должен быть установлен защитный экран, выполненный из стального листа, толщиной не менее 2 мм или из стекла ТФ-5 ГОСТ 9541-75, толщиной не менее 12,5 мм.

3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Срок службы, периодичность осмотров и ремонтов выключателя зависит от частоты операций включения и отключения. Объем и периодичность проверок технического состояния выключателя приведены в табл. 4.

Приведенные в табл. 4 периодичность ремонтов и объемов работ подлежат уточнению на предприятии, эксплуатирующем выключатели, в зависимости от режима их работы и условий эксплуатации.

Помимо работ, указанных в табл.4, должны производиться работы согласно "Правилам устройства электроустановок потребителей.

Таблица 4.

Что проверяется и при помощи какого инструмента, прибора и оборудования. Методика проверки.	Технические требования	
1 Осмотр:	Каждые 5000 циклов	
Проведение внешнего осмотра поверхностей изоляционных	"ВО" номинальных токов,	
полюсов на отсутствие механических повреждений.	но не реже одного	
Очистка от пыли и грязи поверхностей изоляционных полюсов.	раза в 6 лет	
	После проведения 50	
2. Vogutogi u iš povojit	циклов " ВО" номинальных токов	
2. Капитальный ремонт.	отключения , или при	
Разборка выключателя с заменой полюсов	износе контактов ВДК более 2	
	MM.	

ВНИМАНИЕ!

При проверке технического состояния выключателя необходимо соблюдать меры безопасности, указанные в разделе 2.3 настоящего руководства по эксплуатации.

Выключатель обеспечивает гарантированное число операций включения и отключения при соблюдении правил эксплуатации, соответствующих требований настоящего руководства по эксплуатации.

4. ХРАНЕНИЕ

Условия хранения:

Хранение выключателя должно осуществляться только в оригинальной заводской упаковке в закрытом, хорошо проветриваемом помещении вдали от легковоспламеняющихся материалов и отопительных приборов;

Окружающая воздушная среда при хранении должна быть сухой, непыльной и некоррозионной с температурой от минус 50 до плюс 40°C и относительной влажностью не более 80%;

При длительном хранении необходимо с периодичностью один раз в год проводить визуальный осмотр выключателя с целью проверки целостности упаковки, защитных покрытий, отсутствия трещин, сколов на полюсах главной цепи, очагов коррозии на металлических частях элементов выключателя и других видимых повреждений конструкции.

5. ТРАНСПОРТИРОВАНИЕ

Условия транспортирования выключателя:

- в части воздействия климатических факторов - ОЖ4 по ГОСТ 15150-69 с учетом требования защиты от прямого воздействия атмосферных осадков;

- в части воздействия механических факторов группа С по ГОСТ 23216-78; выключатели транспортируются и хранятся в отключенном положении. Силовая пружина привода выключателя в транспортном положении разряжена;
- выключатели транспортируются в собранном виде в вертикальном положении и располагаются в контейнере или кузове в высоту не более чем в один ряд;
- выключатель в заводской упаковке может транспортироваться любым видом транспорта.
 Погрузка, разгрузка и перемещение внутри помещения должны производиться при помощи погрузчика;
- транспортирование выключателя вне заводской упаковки допускается только внутри помещений при помощи подъемного механизма с зацепом согласно рис. 22. Также допускается транспортирование выключателя на тележке с плоской горизонтальной поверхностью.

7. УТИЛИЗАЦИЯ

Выключатель вакуумный не представляет опасности для жизни, здоровья людей и окружающей среды после окончания срока службы. Порядок утилизации выключателей:

- произвести разборку выключателя на составные части: корпус с приводом, полюсы главной цепи;
- произвести разборку привода на составные части: электромагниты, мотор-редуктор, блокконтакты, детали механизмов привода, провода вторичных цепей;
- расколоть наружные оболочки полюсов главной цепи и отделить медные шины, гибкие связи главных цепей от ВДК;
- расколоть ВДК с целью извлечения деталей из меди с гальваническим покрытием серебром. Полюсы главной цепи и ВДК раскалывать только помещенными в защитную оболочку (мешковина, брезент, рогожа и подобные материалы) с целью исключения травмирования острыми осколками;
- извлечь медные детали и вместе с проводом катушек электромагнитов передать в утилизацию как лом меди. Отсортировать детали, содержащие алюминий, и передать в утилизацию как лом алюминия. Стальные детали передать в утилизацию как лом черных металлов.

ПЕРЕЧЕНЬ ОБОРУДОВАНИЯ И МАТЕРИАЛОВ, НЕОБХОДИМЫХ ДЛЯ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ, КОНТРОЛЯ, РЕГУЛИРОВКИ И НАСТРОЙКИ ВЫКЛЮЧАТЕЛЯ. СТАНДАРТНОЕ ОБОРУДОВАНИЕ

СИ	Тип	Класс точности	Предел измерений
Линейка измерительная	ΓΟCT 427-75		300 мм 500 мм
	Пинейка-300 Линейка-500		1000мм
	Линейка-1000		
Штангенциркуль	ГОСТ 166-89		
	ШЦ-1-125-0,1,		
	ШЦ-2-250-0,1		
Микроомметр		4,0	0-180мкОм

МАТЕРИАЛЫ: Уайт-спирит ГОСТ 3134-78, Смазка ЦИАТИМ-201 ГОСТ 6267-74

ПРИЛОЖЕНИЕ Б

КРУТЯЩИЕ МОМЕНТЫ

Резьбы	Крутящий момент для болтового соединения с	
	шестигранной головкой, Нм	
M6	10,5±1,0	
M8	22,0±1,5	
M10	30,0±1,5	
M12	40,0±2,0	
M16	60,0±3,0	
M20	90,0±4,0	

ПРИЛОЖЕНИЕ Г

ПЕРЕЧЕНЬ ТИПОИСПОЛНЕНИЙ ВЫКЛЮЧАТЕЛЯ

Порядковый номер исполнения выключателя	Конструктивное исполнение	Примечание
00	ВВВ1020/630 УХЛ2, 220В, 50Гц;	
01	ВВВ1020/1000 УХЛ2, 220В, 50Гц;	
02	ВВВ1020/1250 УХЛ2 , 220В, 50Гц;	